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Abstract—To deal with the problem of hostile environments, we
proposed to construct heterogeneous sensor networks composed
of both regular nodes and robust nodes, where robust nodes are
better equipped for hostile environments and hence are more
expensive than regular nodes. We study the problem of network
design in heterogeneous wireless sensor networks that involves
optimization of network costs associated with different classes
of nodes versus maximizing coverage and network lifetime.
We consider the design of heterogenous networks with the
objectives of minimizing costs and maximizing network lifetime.
The association we present in heterogeneous sensor network
design between optimizing the number of nodes in each class
with cost constraints and network lifetime for corresponding
network composition maybe of independent interest in the design
of networks in general.

I. INTRODUCTION

Many applications of wireless sensor networks (WSNs) are

in outdoor environments, where they are subject to hostile

environments. In the past, research in WSNs has mentioned

the impact of environment on the efficiency of WSN op-

eration, but no direct effort has been made to address the

problem in the face of hostile environmental attributes that

can damage/destroy nodes in a WSN, thus hampering normal

WSN operation. In this paper, we study the design of WSN

modeling with consideration of harsh environmental attributes.

We propose to construct a heterogeneous WSN with regular

nodes and robust nodes that can withstand harsh environmental

conditions to face the unique challenges posed by hostile

environments on regular nodes. We use the framework of

heterogeneous WSNs to develop a robust WSN that can

withstand the harsh environment and still satisfy the objectives

of providing coverage and prolonging network operation. Our

motivation to the study of heterogeneous WSNs lies in their

ability to incorporate fault tolerance by investigating design of

networks with robust and regular nodes. Such heterogeneous

networks survive better in diverse environmental conditions.

Our work directly addresses network design for environmental

survivability with the help of heterogeneous WSNs.

Heterogeneous networks provide means to design WSNs

that consider various environmental phenomenon that may be

detrimental to one type of nodes but can be withstood by

another type of nodes. One example would be the design of

a heterogeneous network with waterproof nodes and regular

nodes. The waterproof nodes and regular nodes are similar in

all aspects, except for the waterproof coating that guarantees

a higher survival probability than regular nodes in the event

of rains in the deployment region. Secondly, heterogeneous

WSNs provide the ability for fault-tolerance, for the same rea-

sons of design with consideration of environmental attributes.

In hostile environmental condition, waterproof nodes are better

than regular nodes in the event of rains. The same can be stated

for fire-resistant nodes and regular nodes deployed in the event

of a fire.

Network design is the first step in building a heterogeneous

WSN with regular nodes and robust nodes that can with-

stand the harsh environmental conditions. We are interested

in problems in which we have to design a heterogeneous

network with multiple classes of nodes with different costs.

This class of problems is important when we are presented

with a network design budget for a heterogeneous network,

where nodes of different classes have different efficiency of

operation in diverse environments. Since WSNs comprise of

nodes with non-replenishable batteries, it is crucial to design

such a network with network lifetime in consideration. In

the absence of a specified economic constraint on network

design, one way to do this would be the deployment of

dense heterogeneous networks, where redundancy can aid in

prolonging network lifetime by rotation of nodes in the active
and sleep modes of operation. However, most realistic design

scenarios impose an economic constraint on network design

and it is crucial to develop a framework where economic

constraints are balanced with network sensing and lifetime

objectives.

For simplification, we consider a heterogeneous network

with regular and robust nodes. Both regular and robust nodes

are homogeneous with respect to sensing, data processing

and communication abilities. However robust nodes possess

certain attributes that makes them more robust to a certain

environmental attribute than regular nodes. The presence of

this additional attribute increases the cost of a robust node, but

it also provides a guarantee of high probability of operation

in the event of the occurrence of the hostile environmental

attribute.

In this paper, we make three contributions: (1) As far as

we know, we are the first to consider WSNs for survival
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heterogeneity to deal with hostile environment. (2) We provide

a model for characterization of robust nodes that withstand

harsh environmental conditions better than regular nodes. (3)

We provide guidelines for optimal network design for two-

class heterogeneous networks with the help of performance

parameters such as cost, coverage and network lifetime.

The two performance evaluation metrics that we consider

in this paper are cost optimization for a given budget of

network deployment and network lifetime for a given network

composition. We also find the minimum number of waterproof

sensors for given probability of failure of regular nodes from

the hostile environmental attribute. The probability of failure

is evaluated with the help of two different models: partial

differential equation (PDE) modeling [1] and Poisson models

for the hostile environmental attribute.

Our work differs from related work in heterogeneous net-

work design in that we focus on survival heterogeneity. We

study the survival heterogeneity of a two-class heterogeneous

WSN, where one class of nodes is more robust than the other

class due to a protective external feature, such as waterproof

sensors to withstand rain in an outdoor sensing application. We

study network design in such a scenario, where one class of

nodes is more robust and hence more expensive than the other,

resulting in a situation where the cost constraints provides for a

smaller number of robust nodes and a larger number of regular

nodes to be deployed in the deployment region. We study

the survival heterogeneity due to the hostile environmental

attribute that occurs with probability p. We formulate the

cost constraint with a combinatorial optimization problem and

obtain the network lifetime in each case for a given network

composition of regular and robust nodes.

Related Work: Heterogeneous WSNs of different modalities

have been studied for applications such as audio and video

fusion in tracking [2], [3], camera sensor networks [4] and

medical monitoring [5], to name a few. Heterogeneous network

design has been studied in terms of energy efficiency [6],

[7], [8], [9], [10] computational heterogeneity, application

heterogeneity [5], fault-tolerance heterogeneity [11] and [12]

and coverage heterogeneity [13] and [14]. The study of het-

erogeneous WSNs for topology design is presented in [15]

and [16]. Heterogeneity has been studied for fault tolerance

in [11] and [12]. Our work differs in that we study survival

heterogeneity with the help of heterogeneous WSNs.

Organization: The rest of this paper is organized as follows.

Section II presents the cost model and formulation of the

network design problem. Section III presents the simulation

model and results. Finally, Section IV concludes the paper

and presents directions for future research in this direction.

II. PROBLEM FORMULATION AND DERIVATION

We study the problem of a two-class heterogeneous WSN

consisting of N1 regular nodes and N2 robust nodes. The ro-

bust nodes may possess external characteristics like waterproof

or trample-resistant packaging which makes them better suited

than regular nodes to hostile environmental conditions. Thus

regular nodes are more expensive than robust nodes. This can

be formulated as robust nodes being able to survive a given

environmental phenomenon with probability = 1 and regular

nodes survive the environmental phenomenon with probability

p. For example, regular nodes emerge unharmed from rains

with a probability p and waterproof nodes always survive the

rains (p=1). The initial WSN of N1 regular nodes and N2

robust nodes results in pN1 regular nodes and N2 robust nodes

after a bout of rains. Hence a certain budget allocation for

network deployment can result in economical operation if we

have N2 < N1. The problem we study can then be formulated

as follows:

• What is the minimum number of regular and robust nodes

for the given budget a, where robust nodes have a higher

probability of survival in a natural phenomenon than

regular nodes?

• The second part of the problem in network design that

we study is related to the network lifetime for given

composition of nodes in each class. Since robust nodes

are more expensive and more reliable than regular nodes,

what will be the network lifetime for a given duty cycle

of operation due to given composition?

The problem of network design for heterogeneous networks

find applications in a variety of WSN environments, where

utility of operation is maximized by having multiple classes of

nodes with different costs and modes of operation. Although

we have illustrated the problem of network design with the

help of a two-class heterogeneous network with regular and

waterproof nodes, it can be easily extended to a multi-class

network with diverse capabilities assigned to each class of

nodes. With the help of our simulation results, we provide

guidelines on network design for cost constraints while still

satisfying a certain degree of coverage.

A. Cost model
Consider a WSN with N1 number of regular nodes and N2

be the number of robust nodes in a two-class heterogeneous

network. We assume that we have a budget of a = a1 + a2

for nodes in classes N1 and N2, where a1 is allocated for N1

number of regular nodes with cost of C1 per regular node, and

a2 is allocated for N2 number of robust nodes with cost of C2

per robust node. For simplicity, let the cost of the regular nodes

and robust nodes be related inversely to the number of nodes in

each class, i.e., the cost of a regular node is a1/N1 and a2/N2.

Here N1 and N2 are expressed as a change of variable and

are represented in this manner only for notation convenience.

The costs of nodes in each class are fixed, implying that we

can buy a fixed amount of nodes from each class with a given

budget. We formulate the design problem as a vector S, where

S = btX.

Here b is the ratio of the number of nodes in each class to

the total number of nodes in the heterogeneous network. X is

the ratio of node lifetime at the beginning of a cycle to the

node lifetime at the end of a cycle. Defining a cycle as the time

that a node spends in one active state and its consecutive sleep
state, we see that the ratio X depends on the duty cycle that
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dictates the amount of time that a node spends in the active

state. We assume that the nodes in each class are homogeneous

except for external features, such as waterproofed exteriors

for rainy weather. We assume that power consumption in the

sleep state is negligible compared to power consumption in

the active state, and hence the sleep state power consumption

is neglected.

B. Derivation of the number of nodes in each class of the
heterogeneous WSN

Our goal is to maximize the vector S, since maximizing S
maximizes the lifetime of nodes at the end of a cycle. We

perform this maximization subject to the constraint that the

cost of both regular and robust nodes does not exceed a value

Γ. Hence the optimization problem for a 2-class heterogeneous

network takes the form

S =
[

b1 b2

] [
X1

X2

]
(1)

s.t.
a1

N1
+

a2

N2
< Γ. (2)

The formulation of the cost constraint in (1) is equivalent

to the restriction a on the total network cost for N1 regular

and N2 robust nodes. In general, for a multi-class network

with i classes of nodes, where i = {1, 2...n}, the optimization

problem takes the form

S = btX (3)

s.t.
n∑

i=1

ai/Ni. (4)

We introduce some notations for b and X. Let

bi =
Ni∑
Ni

. (5)

Since Xi is a ratio of node lifetime at the end of a cycle to

that at the beginning of the cycle, we denote

Xi =
Lei

Lbi

, (6)

where Lei is the lifetime of a node in class i at the end of

the cycle, and Lbi is the lifetime of a node in class i at the

beginning of the cycle. Let γ be the power spent by a node

in the ’active’ part of its cycle. Then,

Lei = Lbi − Dciγ, (7)

where Dci is the duty cycle of nodes in class i. Hence,

Xi =
Lbi − Dciγ

Lbi
(8)

We define the number of nodes at the end of a cycle as

follows:

Ni = Nbi −
[
NbiLbi − NeiLei

Lini

]
, (9)

where Nbi and Nei are the number of nodes respectively at the

beginning and end of a cycle, and Lini is the initial lifetime of

a node. The lifetime of a regular node at the end of its cycle

depends on its duty cycles and the amount of energy it spends

in environmental modeling.

Assuming that the duration of the hostile environmental

attribute is exponential with parameter l, we obtain the prob-

ability of next occurrence of the hostile attribute (Poisson

distribution). Let this probability be denoted by p(l). If the

probability of failure of a regular node from the hostile

environmental attribute is p, then the number of regular nodes

at the end of a cycle is pN1p (l) and the network lifetime for

N1 regular nodes and N2 robust nodes is given by

pN1p (l) (Lini − Nt (δ + EDc1)) + N2 (Lini − NtEDc2)

where Nt is the number of time slots in a cycle and EDc1

and EDc2 is the power consumption in the active and sleep

parts of the respective duty cycles of regular and robust nodes.

For a two-class network, the optimization problem is given

by the objective function f that maximizes the network lifetime

for the nodes in each class as follows:

f (N1, N2) =
(

N1
N1+N2

N2
N1+N2

) (
X1

X2

)
(10)

subject to the constraint equation g on the available budget Γ
for network deployment given by

g (N1, N2) =
a1

N1
+

a2

N2
< Γ. (11)

We solve this optimization problem by formulating (10) and

(11) as a Lagrangian dual problem. The Lagrangian is formu-

lated as
∂f

∂N1
− λ

∂g

∂N1
= 0, (12)

∂f

∂N2
− λ

∂g

∂N2
= 0, (13)

and
a1

N1
+

a2

N2
− Γ = 0. (14)

Here λ is the Lagrangian optimizing variable.

Procedure: In order to obtain the number of nodes in each

class of the network, we perform the optimization subject to

the initial number of nodes in each class. Thus the first step

of the optimization problem becomes

∂f

∂Nb1
− λ

∂g

∂Nb1
= 0, (15)

∂f

∂Nb2
− λ

∂g

∂Nb2
= 0 (16)

and
a1

N1
+

a2

N2
− Γ = 0. (17)

Having obtained the values of Nb1 and Nb2, we perform the

optimization again to find the number of nodes Ne1 and Ne2

at the end of the cycle.

∂f

∂Ne1
− λ

∂g

∂Ne1
= 0, (18)
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∂f

∂Ne2
− λ

∂g

∂Ne2
= 0 (19)

and
a1

N1
+

a2

N2
− Γ = 0. (20)

Let pi denote the probability that a node in class i has turned

’off’ due to the hostile environmental conditions. Since the

relationship between number of nodes at the beginning and

end of a cycle is a function of the duty cycle, we can obtain

the optimal duty cycle for given constraints of cost in a

heterogeneous network.

The values of Nb1 and Nb2 are given by solving the

following equations:

∂f

∂Nb1
− λ

∂g

∂Nb1
= 0 (21)

yields

1
(N1+N2)

(Lb1 − Dc1γ)
(

1
Lb1−Lini

)
−(

1 − Lb1
Lini

) [
1

(N1+N2)
2 (N1X1 + N2X2) + a1λ

N2
1

]
= 0

(22)

Similarly,
∂f

∂Nb2
− λ

∂g

∂Nb2
= 0 (23)

yields

1
(N1+N2)

(Lb2 − Dc2γ)
(

1
Lb2−Lini

)
−(

1 − Lb2
Lini

) [
1

(N1+N2)
2 (N1X1 + N2X2) + a2λ

N2
2

]
= 0

(24)

We perform the optimization to obtain the equations for Ne1

and Ne2 resulting in

∂f

∂Ne1
− λ

∂g

∂Ne1
= 0 (25)

which yields[
(N1+N2)

(
1−Dc1γ

Lb1

)
−(N1X1+N2X2)

]
(N1+N2)

2

= −a1λ
N2

1

. (26)

Similarly,
∂f

∂Ne2
− λ

∂g

∂Ne2
= 0 (27)

yields [
(N1+N2)

(
1−Dc2γ

Lb2

)
−(N1X1+N2X2)

]
(N1+N2)

2

= −a2λ
N2

2

. (28)

We now present some approximations to obtain closed form

solutions for the optimizations in two special cases: low and

high duty cycles of operation. The duty cycle setting actually

depends on the scheduling algorithms. Here we present closed

form solutions to obtain the number of regular and robust

nodes for the two special cases simply as a guideline. The

qualifying assumptions on network lifetime are stated at the

beginning of each approximation below.

Low duty cycle: For low duty cycle, the node lifetime at the

end of a cycle is approximately equal to the initial lifetime,

i.e.,

Le1 ≈ Lini

Using this approximation in (22) and (24), we get

Nb1 =
N1−Ne1Le1

Lini

1− Lb1
Lini

Nb2 =
N2−Ne2Le2

Lini

1− Lb2
Lini

(29)

where Ne1 and Ne2 are obtained by the probability pi of node

survival in hostile environmental condition.

Similarly, the number of nodes at the end of a low-duty

cycle operation is given from (26) and (28)

Ne1 =
Nb1Lb1−Lini(Nb1−N1)

Le1

Ne2 =
Nb2Lb2−Lini(Nb2−N2)

Le2

(30)

High duty cycle: For high duty cycle of operation in the

heterogeneous network, since nodes in both classes have a

high duty cycle, we use the following approximation:

Dc1 ≈ Dc2 (31)

Also, due to the duty cycle value, the node lifetimes for both

classes at the beginning of a cycle are identical. Hence,

Lb1 ≈ Lb2 (32)

Substituting (31) and (32) in (22)- (28), we get

N1

N2
=

√
a1

a2
, (33)

which implies that the ratio of nodes for a high duty cycle of

operation is proportional to the cost coefficients ai. This shows

that for a high duty cycle, the cost of network deployment

depends only on the cost of nodes in the classes of the

heterogeneous WSN. This is because at high duty cycles, the

probability pi of node survival does not impact the decision of

number of nodes to be turned in the active state in each class.

The entire network is a mostly active network irrespective of

node class.

III. SIMULATION MODEL AND RESULTS

A. Simulation parameters

In this section, we present the results of network costs,

lifetime and coverage obtained for various network com-

positions. We assume the regular nodes and robust nodes

can be in any of two states: active or sleep. We use the

specifications of the Imote2 sensor node from Crossbow to

determine the currents drawn in active and sleep state. The

currents drawn in the active state and sleep state are assumed

to be 44 mA and 390 μA respectively. These values are used to

determine energy consumption in different duty cycles. Since

the Imote 2 sensor uses a PXA 271 processor, we assume the

computational energy based on the number of duty cycles and

energy consumption per cycle for the PXA 27x processor.
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We assume that the hostile attribute occurs with intensity

λ=3 in a sixty-day period. The occurrence of the hostile

attribute causes the regular node to fail with a probability p
that is varied from 0.3 to 0.7. The Poisson model is used

to simulate the occurrence of the hostile attribute, while the

PDE model can be used to simulate more complex weather

systems. In each case, we only use the results of simplified

weather models studied in [17] and [18] to obtain optimal

network composition and lifetime results.

B. Optimal network composition

In this section, we present network costs with varying

network composition when the hostile environment attributes

are modeled using Poisson and PDE models. In each case, we

study the relationship between network costs and composition

for p = 0.3 and 0.7. Figure 1 shows the network costs to

maintain 90% coverage for 60 days. Our results show the op-

timal costs to maintain 90% coverage with Poisson modeling

of the hostile attribute which occurs with an intensity λ. The

modeling and occurrence of the attribute causes regular nodes

to die. Hence, in order to maintain a given degree of coverage,

(in our case, 90 %), the network costs increase due to increased

number of regular nodes that are deployed to accommodate the

scenario that regular modes may die due to hostile environment

in the future. For lower probability of failure (p =0.3), the cost

of network deployment is lower since the regular nodes are

more resilient to the hostile environmental attribute and their

quantities need not be compensated as much as when they

fail with a higher probability. For p =0.3, the network costs

are lowest for 38% regular nodes. The higher network costs

for different compositions are due to the higher number of

regular nodes required to satisfy coverage. For p =0.7, the

lowest costs are achieved for around 19% regular nodes. The

composition for lowest cost is different from that in Figure 1(a)

due to higher probability of failure consuming higher number

of regular nodes.

Figure 2 shows the network costs when the hostile envi-

ronment is modeled using PDE models. In comparison with

Figure 1, we see that PDE modeling results in higher costs to

maintain a similar degree of coverage. Similar to the results

in Figure 1, a higher probability of failure (p=0.7) of regular

nodes results in higher network cost.

Figure 3 shows the network composition for varying failure

probabilities of regular nodes for a given network budget when

the duty cycle of regular nodes is greater than that of robust

nodes. As the failure probability of regular nodes increases,

we need a greater number of nodes to obtain 90 % degree of

coverage. The number of regular nodes is much higher than

the number of robust nodes due to the cost constraints. Figure

3(b) shows the plot of percent decrease in number of regular

and robust nodes for increasing probability of failure when the

duty cycle of robust nodes is made higher than that of regular

nodes. This is because the number of robust nodes needed for

a given degree of coverage increases with increasing failure

probability of a regular node. We see that when the robust

nodes are active more than regular nodes, the percentage

Fig. 1. Cost to obtain 90 % coverage with Poisson models
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decrease in the number of regular nodes is substantial, leading

to higher savings in cost of network deployment.

C. Relationship to network lifetime

In this section, we present the results of network compo-

sition and failure probability of regular nodes to the network

lifetime. Dc1 and Dc2 are the duty cycles of the regular and

robust nodes respectively. Figure 4 shows the network costs

for different duration of operation. The results in Figure 4 are

for 60% regular nodes, where the robust nodes are twice as

expensive as regular nodes. We see that when the network

operation is designed for maximum of 10 days, the network

costs are lowest, since a greater number of robust nodes used

can compensate for more vulnerable regular nodes. However,

for larger operation time, larger number of nodes need to

be deployed. This is because regular nodes succumb to the

hostile attribute and robust nodes run out of battery energy

from staying in the active state.

Figure 5 shows the plot of networks costs versus the network

lifetime that can be obtained from optimal composition of

the heterogeneous WSN for fixed budget. We obtain network

lifetime results (mA-hrs) from increasing network costs for

varying duty cycle ratios. We assume Poisson modeling in
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Fig. 2. Cost to obtain 90 % coverage with PDE models

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Percentage of regular nodes

N
et

w
or

k 
co

st

robust/regular(cost)=1
robust/regular(cost) =3
robust/regular(cost)=4

(a) p=0.3

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5
x 104

Percentage of regular nodes

N
et

w
or

k 
co

st

robust/regular(cost)=1
robust/regular(cost) =3
robust/regular(cost)=4

(b) p=0.7

each case. We see that as network costs increase, we can obtain

increased network lifetime. This can be explained as follows:

Increased network costs result from higher number of regular

nodes that are deployed to compensate for the failed regular

nodes. With regards to the duty cycle, we see that when the

duty cycle of robust nodes is higher than that of regular nodes,

the network lifetime is highest. The lowest network lifetime

is obtained when the duty cycle of regular nodes and robust

nodes are set equal to 0.5, since the regular nodes are prone

to failure from the environmental attribute as well as higher

energy consumption in modeling which is not prevalent in

robust nodes.

Figure 6 shows the network lifetime as a function of the

percentage of robust nodes in the heterogeneous WSN for

two different duty cycle ratios with a fixed network budget.

As the percentage of robust nodes increases, the network

lifetime increases, since the robust nodes are immune to failure

from the hostile environmental attribute and unlike regular

nodes, they do not spend computational energy in modeling

the hostile attribute. When the duty cycle of regular nodes

is higher than that of robust nodes, the network lifetime

obtained is lower than the case when duty cycle of robust

nodes is higher than that of regular nodes. This is also

Fig. 3. Optimal Network composition for 90 % coverage
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(b) Change in network composition versus probability of failure
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Fig. 4. Network costs with varying operation time

attributed to the savings in network energy from computation

and immunity of robust nodes from damage caused by the

hostile environment. Here we note that as the percentage of

robust nodes increases, the network lifetime and the cost to

deploy the network increases. For a fixed network budget
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Fig. 5. Network lifetime versus network costs for varying duty cycle
ratios
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where robust nodes are more expensive than regular nodes,

employing a homogeneous network of robust nodes will yield

the highest lifetime. However, the high cost of a robust node

constrains the number of nodes that can be deployed with that

budget. A lower number of nodes will result in larger coverage

holes, i.e. parts of the deployment region that are not covered

by sensor nodes. Our results show that heterogeneous WSNs
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Fig. 6. Percentage of robust nodes versus network lifetime for given network
budget
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Fig. 7. Network costs vs Gaussian probability of failure

provide environmental survivability with high network lifetime

and adequate coverage in the deployment region.

D. Impact of Gaussian probability of failure

In this section, we use the Gaussian probability of failure

of a regular node instead of the fixed probability of failure

that we used in the previous section. Each point on the X-axis

in Figures 7 and 8 denotes the mean probability of failure

for a Gaussian distribution. Figure 7 shows the network costs

for Gaussian probability of failure of regular nodes for various

duty cycle ratios. For higher failure probability, when the duty

cycle of robust nodes is greater than that of regular nodes, it

is expensive to deploy the network. The converse is true for

lower duty cycle of robust nodes than regular nodes. For lower

duty cycle of robust nodes than regular nodes, we have lower

network costs.

Figure 8 shows a plot of network lifetime versus the

Gaussian probability of failure of regular nodes for various

duty cycle ratios. When the duty cycles of robust nodes is

higher, we obtain higher network lifetime due to immunity

from damage from the hostile environmental attribute. Sim-
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Fig. 8. Network lifetime vs Gaussian probability of failure

ilarly, when the duty cycle of regular nodes is higher, it

results in lower network lifetime. The slope of the graph

indicated by the relationship of the network lifetime and

costs to the probability of failure of regular nodes is due

to the harshness of the environmental attribute. A harsher

environment indicated by high probability of failure ( 0.45)

drives up the costs, since a higher number of regular nodes

fail and have to be compensated by a higher number of nodes

in initial deployment to satisfy a 90% degree of coverage.

For milder environments, i.e. probability of failure <0.45, the

slope of cost and lifetime versus failure does not change as

drastically as in the converse case. A comparison of Figures

5 and 8 shows that for a higher probability of failure in

the Gaussian distribution, the network lifetime and associated

network costs are higher than for a fixed probability of failure.

These results draw attention to the need for WSN design

with heterogeneous networks comprising of different classes

of nodes, each of which possesses varying degree of immunity

to hostile environmental attributes that may obstruct efficient

WSN operation.

IV. CONCLUSIONS

In this paper, we studied the design of a heterogeneous

WSN, where the heterogeneity arose due to survival probabil-

ity of one class of nodes being higher than the other class of

nodes. This heterogeneity was analyzed in terms of its impact

on network design, since the robustness and associated higher

costs of one class of nodes achieved conflicting objectives:

higher network costs, higher coverage and higher network

lifetime. We studied the optimal heterogeneous network design

in terms of the ratios of nodes in each class to satisfy network

objectives of coverage and lifetime, with a given constraint on

the network budget. We also performed preliminary investi-

gation in the design of a two-class heterogeneous WSN with

environmental modeling.

Our ongoing work in this direction is to extend the net-

work design formulation and analysis to multi-class, multi-

constrained heterogeneous WSNs. The results of our paper

contribute significantly to network design problems. Other

directions of our future work are detailed analyses of envi-

ronmental modeling on the performance parameters of hetero-

geneous WSNs.
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